$V = 868.11 (15) \text{ Å}^3$

Mo Ka radiation

 $0.40 \times 0.30 \times 0.22 \text{ mm}$

4313 measured reflections

1607 independent reflections

1174 reflections with $I > 2.0\sigma(I)$

 $\mu = 1.30 \text{ mm}^-$

T = 298 K

 $R_{\rm int} = 0.039$

Z = 2

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichlorido[bis(2-ethyl-5-methyl-1Himidazol-4-yl- κN^3)methane]cobalt(II) monohydrate

Xiao-Min Qian,* Yang-Hui Luo, Jin-Feng Li, Shu-Lin Mao and Ge Gao

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: chmsunbw@seu.edu.cn

Received 18 January 2011; accepted 24 March 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.040; wR factor = 0.114; data-to-parameter ratio = 14.7.

In the title compound, $[CoCl_2(C_{13}H_{20}N_4)] \cdot H_2O$, the Co^{II} atom lies on a mirror plane and is four-coordinated by two N atoms of the imidazole ligand and two Cl atoms in a distorted tetrahedral arrangement. The water molecule participates in the formation of hydrogen bonds, resulting in a three dimensional network involving the Cl atoms and the NH groups. The terminal C atom of the ethyl group is disordered over two sites of equal occupancy.

Related literature

For background to the use of imidazole derivatives as catalyts and biocatalysts for dioxygen transport and electron storage, see: Bouwman et al. (2000). For related structures, see: Beznischenko et al. (2007); Pajunen (1981).

Experimental

Crystal data

$[CoCl_2(C_{13}H_{20}N_4)]\cdot H_2O$
$M_r = 380.18$
Monoclinic, $P2_1/m$
a = 8.3927 (7) Å
b = 12.1388 (14) Å
c = 8.5860 (9) Å
$\beta = 97.045 \ (1)^{\circ}$

Data collection

Bruker SMART 1K CCD areadetector diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.625, \ T_{\max} = 0.763$

Refinement

$R_{1} > 20(1) = 0.040$ 107 parameters	
$wR(F^2) = 0.114$ H-atom parameters constraint	ned
$S = 1.03 \qquad \qquad \Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$	
1607 reflections $\Delta \rho_{\min} = -0.25 \text{ e} \text{ Å}^{-3}$	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01-H1C\cdots Cl1$ $01-H1D\cdots Cl2^{i}$ $N2-H2\cdots O1^{ii}$	0.85	2.41	3.256 (4)	175
	0.85	2.29	3.139 (4)	175
	0.86	2.12	2.959 (3)	165

Symmetry codes: (i) x, y, z + 1; (ii) -x + 1, -y, -z + 1.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2382).

References

Beznischenko, A. O., Makhankova, V. G., Kokozay, V. N., Zubatyuk, R. I. & Shishkin, O. V. (2007). Inorg. Chim. Acta, 10, 1325-1329.

Bouwman, E., Gutierrez-Soto, L. & Beretta, M. (2000). Inorg. Chim. Acta, 304, 250-259

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Pajunen, A. (1981). Cryst. Struct. Commun. 10, 957-958.

Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, m575 [doi:10.1107/S1600536811011032]

Dichlorido[bis(2-ethyl-5-methyl-1*H*-imidazol-4-yl- κN^3)methane]cobalt(II) monohydrate

X.-M. Qian, Y.-H. Luo, J.-F. . Li, S.-L. . Mao and G. Gao

Comment

Imidazole derivatives are used as catalyts and biocatalysts for dioxygen transport and electron storage (Bouwman *et al.*, 2000). As part of our interest in imidazole derivatives, we report here the crystal structure of a new cobalt complex of imidazole derivative.

In the title complex (Fig. 1), the Co^{II} lies on a mirror plane and displays a tetrahedral coordination with two N atoms of the imidazole ligand and two Cl atoms. The asymmetric unit also contains a solvate water molecule. The distances and angles agree with related structures (Beznischenko *et al.*, 2007; Pajunen, 1981). The terminal C-atom of the ethyl group was disordered over two sites C6 and C6' with equal site occopancy factors.

The water molecule participates in the formation of intricated hydrogen bonds resulting in a three dimensionnal network involving the Cl atoms and the NH groups (Table 1).

Experimental

The ligand and the title complex were prepared by following the procedures reported in the literature (Bouwman, *et al.*, 2000). Single crystals of the title compound as purule prisms were grown from a solution of ethanol by slow evaporation at room temperature within a few days.

Refinement

Although the atoms were visible in difference Fourier maps, they were included in the subsequent refinement using restraints. The hydrogen atoms were placed geometrically and treated as riding, with O-H = 0.85 Å, N-H = 0.86 Å, and C-H = 0.96 (methyl) or 0.97 Å (methylene) with $U_{iso}(H) = 1.5U_{eq}$ (methyl C) or $1.2U_{eq}$ (the rest of the parent atoms).

Figures

Fig. 1. The structure of the title compound with atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The terminal C-atom of the ethyl group was disordered over sites C6 and C6'. Symmetry code "A" in the labels: x, -y+1/2, z.

Dichlorido[bis(2-ethyl-5-methyl-1*H*-imidazol-4-yl- κN^3)methane]cobalt(II) monohydrate

F(000) = 394

 $\theta = 2.4 - 25.0^{\circ}$

 $\mu = 1.30 \text{ mm}^{-1}$

T = 298 K

Prism, violet

 $0.40 \times 0.30 \times 0.22 \text{ mm}$

 $D_{\rm x} = 1.454 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1482 reflections

Crystal data

 $[CoCl_2(C_{13}H_{20}N_4)] \cdot H_2O$ $M_r = 380.18$ Monoclinic, $P2_1/m$ Hall symbol: -P 2yb a = 8.3927 (7) Å b = 12.1388 (14) Å c = 8.5860 (9) Å $\beta = 97.045$ (1)° V = 868.11 (15) Å³ Z = 2

Data collection

Bruker SMART 1K CCD area-detector diffractometer	1607 independent reflections
Radiation source: fine-focus sealed tube	1174 reflections with $I > 2.0\sigma(I)$
graphite	$R_{\rm int} = 0.039$
Detector resolution: 8.192 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
ϕ and ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -14 \rightarrow 13$
$T_{\min} = 0.625, T_{\max} = 0.763$	$l = -5 \rightarrow 10$
4313 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.114$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0528P)^{2} + 0.6331P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
1607 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
109 parameters	$\Delta \rho_{max} = 0.35 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.25 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds

in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z		$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Co1	0.75499 (7)	0.2500	0.320	643 (8)	0.0443 (3)	
Cl1	0.93574 (14)	0.2500	0.543	316 (16)	0.0521 (4)	
Cl2	0.88551 (17)	0.2500	0.111	144 (17)	0.0656 (4)	
01	0.6677 (4)	0.2500	0.787	71 (4)	0.0547 (9)	
H1C	0.7331	0.2500	0.719	90	0.066*	
H1D	0.7215	0.2500	0.877	76	0.066*	
N1	0.5936 (3)	0.1271 ((2) 0.322	23 (4)	0.0461 (7)	
N2	0.4566 (3)	-0.0235	0.269	90 (4)	0.0525 (8)	
H2	0.4344	-0.0904	0.241	13	0.063*	
C1	0.6018 (4)	0.0241 ((3) 0.276	63 (5)	0.0503 (10)	
C2	0.3496 (4)	0.0527 ((3) 0.313	31 (4)	0.0446 (9)	
C3	0.4343 (4)	0.1455 ((3) 0.347	73 (4)	0.0423 (8)	
C4	0.3821 (6)	0.2500	0.41	56 (7)	0.0504 (13)	
H4A	0.4209	0.2500	0.520	68	0.060*	
H4B	0.2658	0.2500	0.400	61	0.060*	
C5	0.7486 (4)	-0.0350	0.238	83 (7)	0.0751 (14)	
H5A	0.8416	0.0099	0.274	40	0.090*	0.50
H5B	0.7585	-0.1032	0.297	76	0.090*	0.50
H5'A	0.8073	-0.0616	0.335	53	0.090*	0.50
H5'B	0.8171	0.0180	0.194	41	0.090*	0.50
C6	0.7529 (13)	-0.0595	(9) 0.083	39 (15)	0.079 (2)	0.50
H6A	0.6625	-0.1049	0.046	69	0.118*	0.50
H6B	0.8504	-0.0982	0.072	22	0.118*	0.50
H6C	0.7488	0.0075	0.024	40	0.118*	0.50
C6'	0.7231 (13)	-0.1306	0.122	25 (14)	0.079 (2)	0.50
H6'1	0.6592	-0.1062	0.028	84	0.118*	0.50
H6'2	0.6688	-0.1895	0.168	87	0.118*	0.50
H6'3	0.8252	-0.1562	0.097	75	0.118*	0.50
C7	0.1749 (4)	0.0265 ((4) 0.313	36 (6)	0.0614 (11)	
H7A	0.1211	0.0891	0.351	12	0.092*	
H7B	0.1640	-0.0354	0.380	09	0.092*	
H7C	0.1279	0.0091	0.208	88	0.092*	
Atomic displa	acement parameters	(\mathring{A}^2)				
1	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0267 (4)	0.0526 (5)	0.0533 (5)	0.000	0.0037 (3)	0.000

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

Cl1	0.0388 (7)	0.0628 (8)	0.0534 (8)	0.000	0.0002 (6)	0.000
Cl2	0.0543 (8)	0.0925 (11)	0.0515 (8)	0.000	0.0126 (7)	0.000
O1	0.051 (2)	0.060 (2)	0.053 (2)	0.000	0.0044 (17)	0.000
N1	0.0271 (14)	0.0473 (18)	0.064 (2)	-0.0015 (12)	0.0038 (13)	-0.0029 (16)
N2	0.0347 (15)	0.0457 (18)	0.076 (2)	-0.0011 (14)	0.0010 (15)	-0.0062 (17)
C1	0.0285 (17)	0.053 (2)	0.068 (3)	0.0012 (16)	0.0006 (16)	-0.003 (2)
C2	0.0331 (17)	0.047 (2)	0.054 (2)	0.0014 (15)	0.0033 (15)	0.0048 (19)
C3	0.0319 (17)	0.046 (2)	0.049 (2)	0.0011 (15)	0.0066 (15)	0.0069 (18)
C4	0.041 (3)	0.052 (3)	0.061 (4)	0.000	0.016 (3)	0.000
C5	0.038 (2)	0.061 (3)	0.126 (4)	0.0039 (19)	0.012 (2)	-0.018 (3)
C6	0.069 (4)	0.083 (7)	0.089 (6)	0.009 (5)	0.030 (4)	-0.008 (6)
C6'	0.069 (4)	0.083 (7)	0.089 (6)	0.009 (5)	0.030 (4)	-0.008 (6)
C7	0.036 (2)	0.062 (3)	0.087 (3)	-0.0042 (18)	0.011 (2)	0.007 (2)

Geometric parameters (Å, °)

Co1—N1	2.012 (3)	C4—H4B	0.9700
Co1—N1 ⁱ	2.012 (3)	C5—C6	1.363 (13)
Co1—Cl1	2.2520 (14)	C5—C6'	1.526 (12)
Co1—Cl2	2.2590 (16)	С5—Н5А	0.9700
O1—H1C	0.8500	С5—Н5В	0.9700
O1—H1D	0.8500	С5—Н5'А	0.9700
N1—C1	1.316 (5)	С5—Н5'В	0.9700
N1—C3	1.398 (4)	C6—H5'B	1.3943
N2—C1	1.343 (4)	С6—Н6А	0.9600
N2—C2	1.374 (4)	С6—Н6В	0.9600
N2—H2	0.8600	С6—Н6С	0.9600
C1—C5	1.496 (5)	С6'—Н6'1	0.9600
C2—C3	1.345 (5)	С6'—Н6'2	0.9600
C2—C7	1.500 (5)	С6'—Н6'3	0.9600
C3—C4	1.486 (4)	C7—H7A	0.9600
C4—C3 ⁱ	1.486 (4)	С7—Н7В	0.9600
C4—H4A	0.9700	С7—Н7С	0.9600
N1—Co1—N1 ⁱ	95.69 (16)	C6—C5—C1	116.0 (6)
N1—Co1—Cl1	113.48 (9)	C1—C5—C6'	117.0 (5)
N1 ⁱ —Co1—Cl1	113.48 (9)	C6—C5—H5A	108.3
N1—Co1—Cl2	112.23 (9)	C1—C5—H5A	108.3
N1 ⁱ —Co1—Cl2	112.23 (9)	C6—C5—H5B	108.3
Cl1—Co1—Cl2	109.28 (5)	C1—C5—H5B	108.3
H1C—O1—H1D	108.3	H5A—C5—H5B	107.4
C1—N1—C3	106.5 (3)	C1—C5—H5'A	108.5
C1—N1—Co1	130.5 (2)	C6'—C5—H5'A	108.8
C3—N1—Co1	122.3 (2)	C1—C5—H5'B	108.1
C1—N2—C2	108.5 (3)	C6'—C5—H5'B	107.0
C1—N2—H2	125.7	H5'A—C5—H5'B	107.1
C2—N2—H2	125.7	С5—С6—Н6А	109.5
N1-C1-N2	110.0 (3)	С5—С6—Н6В	109.5
N1—C1—C5	126.6 (3)	С5—С6—Н6С	109.5

N2—C1—C5	123.4 (3)	C5—C6'—H6'1	109.5
C3—C2—N2	106.1 (3)	С5—С6'—Н6'2	109.5
C3—C2—C7	131.8 (3)	H6'1—C6'—H6'2	109.5
N2—C2—C7	122.0 (3)	С5—С6'—Н6'3	109.5
C2—C3—N1	108.8 (3)	H6'1—C6'—H6'3	109.5
C2—C3—C4	128.9 (3)	H6'2—C6'—H6'3	109.5
N1—C3—C4	122.0 (3)	С2—С7—Н7А	109.5
C3—C4—C3 ⁱ	117.3 (4)	С2—С7—Н7В	109.5
C3—C4—H4A	108.0	H7A—C7—H7B	109.5
C3 ⁱ —C4—H4A	108.0	С2—С7—Н7С	109.5
C3—C4—H4B	108.0	Н7А—С7—Н7С	109.5
C3 ⁱ —C4—H4B	108.0	Н7В—С7—Н7С	109.5
H4A—C4—H4B	107.2		
N1 ⁱ —Co1—N1—C1	156.8 (3)	N2—C2—C3—N1	0.8 (4)
Cl1—Co1—N1—C1	-84.6 (4)	C7—C2—C3—N1	-177.8 (4)
Cl2—Co1—N1—C1	39.9 (4)	N2—C2—C3—C4	-173.5 (4)
N1 ⁱ —Co1—N1—C3	-12.2 (4)	C7—C2—C3—C4	8.0 (7)
Cl1—Co1—N1—C3	106.5 (3)	C1—N1—C3—C2	-1.0 (4)
Cl2—Co1—N1—C3	-129.0 (3)	Co1—N1—C3—C2	170.3 (2)
C3—N1—C1—N2	0.7 (4)	C1—N1—C3—C4	173.8 (4)
Co1—N1—C1—N2	-169.5 (2)	Co1—N1—C3—C4	-15.0 (5)
C3—N1—C1—C5	-178.7 (4)	C2—C3—C4—C3 ⁱ	-138.0 (4)
Co1—N1—C1—C5	11.1 (7)	N1—C3—C4—C3 ⁱ	48.3 (7)
C2—N2—C1—N1	-0.3 (5)	N1—C1—C5—C6	-110.0 (7)
C2—N2—C1—C5	179.2 (4)	N2—C1—C5—C6	70.7 (8)
C1—N2—C2—C3	-0.3 (4)	N1—C1—C5—C6'	-153.4 (6)
C1—N2—C2—C7	178.4 (4)	N2—C1—C5—C6'	27.3 (8)

Symmetry codes: (i) x, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O1—H1C···Cl1	0.85	2.41	3.256 (4)	175
O1—H1D···Cl2 ⁱⁱ	0.85	2.29	3.139 (4)	175
N2—H2…O1 ⁱⁱⁱ	0.86	2.12	2.959 (3)	165

Symmetry codes: (ii) *x*, *y*, *z*+1; (iii) –*x*+1, –*y*, –*z*+1.

Fig. 1